Gene Symbol	Gene Name	Tissue Specificity	Subcellular Localization	References
ACTA2	Actin alpha 2, smooth muscle	Smooth muscle and myoepithelial cells	Cytoskeleton	45–48
BGN	Biglycan	Cartilage and connective tissue	Extracellular matrix, secreted	47–50
CILP	Cartilage intermediate layer protein	Cartilage	Extracellular matrix	51–53
COL1A1	Collagen type I alpha 1 chain	Ubiquitously expressed	Extracellular matrix	47,48
COL3A1	Collagen type III alpha 1 chain	Detected in several tissues including cervix, uterine, gallbladder, and smooth muscle.	Extracellular matrix, secreted	47,48,54
COL8A1	Collagen type VIII alpha 1 chain	Endothelium of blood vessels. Specifically expressed in peritoneal fibroblasts and mesothelial cells.	Extracellular matrix	47,48,55,56
CST6	Cystatin E/M	Skin	Secreted	57,58
CTHRC1	Collagen triple helix repeat containing 1	Expressed in fibroblasts, smooth muscle cells, bone tissue, and blood vessels after injury.	Secreted	59–61
DDAH1	Dimethylarginine dimethylaminohydrolase 1	Detected in brain, liver, kidney, pancreas, and heart.	Cytoplasmic (Golgi)	47,48,62,63
DDR2	Discoidin domain receptor tyrosine kinase 2	Highly expressed in heart and lung. Detected in brain, placenta, liver, skeletal muscle, pancreas, kidney, and cartilage.	Cell membrane	47,48,64– 66
FN1	Fibronectin 1	Widely expressed. High levels in fibroblasts, hepatocytes, epithelial, and other cell types	Extracellular matrix and secreted	47,48,67
GSN	Gelsolin	Widely expressed	Cytoskeleton and secreted	47,48,68– 70
MEOX1	Mesenchyme homeobox 1	Expressed endothelial cells. High levels in adipose and breast tissue.	Nucleus, nucleoli, mitochondrion	47,48,71
MFAP5	Microfibril associated protein 5	Widely expressed, high in endometrium and in stromal ovarian tumors.	Extracellular matrix, secreted	47,48,72
MGP	Matrix Gla protein	Expressed in several tissues, high in breast tissue and tubular epithelial cells.	Extracellular matrix, secreted	47,48,73
P4HA1	Prolyl 4-hydroxylase subunit alpha 1	Widely expressed, high in gliomas.	Cytoplasm and extracellular matrix	47,48,74,75
PDGFRA	Platelet derived growth factor receptor alpha	Widely expressed. Detected in platelets, brain, fibroblasts, smooth muscle, heart, and endothelium.	Cell membrane. Cytoplasmic expression in myoepithelial cells	47,48,76
PDPN	Podoplanin	Highly expressed in placenta, lung, skeletal muscle, brain, and lymphatics.	Cell membrane. Localizes to membrane projections such as filopodia, lamellipodia and ruffles.	47,48,77– 80
POSTN	Periostin	Widely expressed with highest levels in aorta, stomach, lower gastrointestinal tract, placenta,	Extracellular matrix, secreted.	47,48,81– 83
PRG4	Proteoglycan 4	uterus, thyroid tissue and breast Widely expressed with highest levels in liver, cartilage, adipose, and synovial tissue	Extracellular matrix, secreted	47,48,84
PTN	Pleiotrophin	Brain and endocrine. Detected in osteoblasts	Secreted, cytoplasmic	47,48,85,86
S100A4	S100 calcium binding protein A4	Several tissues. Distinct expression in infiltrating immune cells, and various metastatic cancers.	Cell membrane	47,48,87,88
SFRP2	Secreted frizzled related protein 2	Expressed in mesenchymal stem cells. Highest levels in adipose tissue, small intestine and colon	Secreted	47,48,89,90
TCF21	Transcription factor 21	Expressed in cardiac fibroblast and in several tissues during development. Enhanced in placenta, spleen and lung	Nucleus, also nucleolar and cytoplasmic	47,48,91
THY1	Thy-1 cell surface antigen	Expressed in several tissues with highest in smooth muscle, and cerebral cortex	Cell membrane	47,48,92– 95
VIM	Vimentin	Expressed in several tissues. Highly expressed in fibroblasts	Cytoskeletal	47,48,96,97
WT1	WT1 transcription factor	Expressed in the kidney and a subset of hematopoietic cells	Nucleus	47,48,98,99

Supplementary Table 1. Cardiac fibroblast specific genes.

List of published genes expressed at high levels in cardiac fibroblasts with their corresponding tissue specificity and subcellular localization.

References:

- 45. lyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Dev. Camb. Engl. 142, 1528–1541 (2015).
- 46. Gomez, D., Shankman, L. L., Nguyen, A. T. & Owens, G. K. Detection of Histone Modifications at Specific Gene Loci in Single Cells in Histological Sections. *Nat. Methods* 10, 171–177 (2013).
- 47. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
- 48. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).
- 49. Lechner, B. E., Lim, J. H., Mercado, M. L. & Fallon, J. R. Developmental regulation of biglycan expression in muscle and tendon. *Muscle Nerve* 34, 347–355 (2006).
- 50. Zanotti, S. et al. Decorin and biglycan expression is differentially altered in several muscular dystrophies. Brain 128, 2546–2555 (2005).
- 51. Seki, S. et al. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. *Nat. Genet.* **37**, 607–612 (2005).
- 52. Lorenzo, P., Bayliss, M. T. & Heinegård, D. A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. *J. Biol. Chem.* 273, 23463–23468 (1998).
- 53. Lorenzo, P., Neame, P., Sommarin, Y. & Heinegård, D. Cloning and deduced amino acid sequence of a novel cartilage protein (CILP) identifies a proform including a nucleotide pyrophosphohydrolase. *J. Biol. Chem.* **273**, 23469–23475 (1998).
- 54. Behera, M. A. et al. Thrombospondin-1 and thrombospondin-2 mRNA and TSP-1 and TSP-2 protein expression in uterine fibroids and correlation to the genes COL1A1 and COL3A1 and to the collagen cross-link hydroxyproline. Reprod. Sci. Thousand Oaks Calif 14, 63–76 (2007).
- 55. Kittelberger, R., Davis, P. F., Flynn, D. W. & Greenhill, N. S. Distribution of type VIII collagen in tissues: an immunohistochemical study. *Connect. Tissue Res.* 24, 303–318 (1990).
- 56. Greenhill, N. S., Rüger, B. M., Hasan, Q. & Davis, P. F. The alpha1(VIII) and alpha2(VIII) collagen chains form two distinct homotrimeric proteins in vivo. *Matrix Biol. J. Int. Soc. Matrix Biol.* 19, 19–28 (2000).
- 57. Cheng, T. et al. Colocalization of Cystatin M/E and its Target Proteases Suggests a Role in Terminal Differentiation of Human Hair Follicle and Nail. J. Invest. Dermatol. 129, 1232–1242 (2009).
- 58. Smith, R. et al. Intra- and extracellular regulation of activity and processing of legumain by cystatin E/M. Biochimie 94, 2590–2599 (2012).
- 59. Pyagay, P. et al. Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ. Res. 96, 261–268 (2005).
- 60. Kimura, H. et al. Cthrc1 Is a Positive Regulator of Osteoblastic Bone Formation. PLOS ONE 3, e3174 (2008).
- 61. Lee, J. et al. CTHRC1 promotes angiogenesis by recruiting Tie2-expressing monocytes to pancreatic tumors. Exp. Mol. Med. 48, e261 (2016).
- 62. Leiper, J. M. *et al.* Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. *Biochem. J.* **343 Pt 1**, 209–214 (1999).
- 63. Shao, Z. et al. Pulmonary hypertension associated with advanced systolic heart failure: dysregulated arginine metabolism and importance of compensatory dimethylarginine dimethylaminohydrolase-1. J. Am. Coll. Cardiol. 59, 1150–1158 (2012).
- 64. Xu, L. et al. Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis Rheum. 56, 2663–2673 (2007).
- 65. Morales, M. O., Price, R. L. & Goldsmith, E. C. Expression of Discoidin Domain Receptor 2 (DDR2) in the Developing Heart. *Microsc. Microanal.* 11, 260–267 (2005).
- 66. Shrivastava, A. et al. An Orphan Receptor Tyrosine Kinase Family Whose Members Serve as Nonintegrin Collagen Receptors. Mol. Cell 1, 25–34 (1997).
- 67. lida, R., Yasuda, T. & Kishi, K. Purification of a young age-related glycoprotein (Ugl-Y) from normal human urine. J. Biochem. (Tokyo) 101, 357–363 (1987).
- Hu, W.-S. et al. Gelsolin (GSN) induces cardiomyocyte hypertrophy and BNP expression via p38 signaling and GATA-4 transcriptional factor activation. Mol. Cell. Biochem. 390, 263–270 (2014).
- 69. Peng, X. et al. Gelsolin in cerebrospinal fluid as a potential biomarker of epilepsy. Neurochem. Res. 36, 2250–2258 (2011).
- 70. Tsai, M.-H. *et al.* Identification of secretory gelsolin as a plasma biomarker associated with distant organ metastasis of colorectal cancer. *J. Mol. Med. Berl. Ger.* **90**, 187–200 (2012).
- 71. Nguyen, P. D. et al. Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1. Nature 512, 314–318 (2014).
- 72. Leung, C. S. et al. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat. Commun. 5, 5092 (2014).
- 73. Lorenzen, J. M. et al. Fetuin, matrix-Gla protein and osteopontin in calcification of renal allografts. PloS One 7, e52039 (2012).
- 74. Gilkes, D. M., Bajpai, S., Chaturvedi, P., Wirtz, D. & Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. *J. Biol. Chem.* 288, 10819–10829 (2013).
- 75. Hu, W.-M. et al. Identification of P4HA1 as a prognostic biomarker for high-grade gliomas. Pathol. Res. Pract. 213, 1365–1369 (2017).
- 76. Aghajanian, H. *et al.* Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries. *Dis. Model. Mech.* **10**, 1101–1108 (2017).
- 77. Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol. JASN 15, 603–612 (2004).
- 78. Martín-Villar, E. et al. Podoplanin associates with CD44 to promote directional cell migration. Mol. Biol. Cell 21, 4387–4399 (2010).
- 79. Martín-Villar, E. et al. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J. Cell Sci. 119, 4541–4553 (2006).
- 80. Jain, R. et al. Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nat. Commun. 6, 6727 (2015).
- 81. Gillan, L. et al. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res. 62. 5358–5364 (2002).
- Coutu, D. L. et al. Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J. Biol. Chem. 283, 17991–18001 (2008).
- 83. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

- Ikegawa, S., Sano, M., Koshizuka, Y. & Nakamura, Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes.
 Cytogenet. Genome Res. 90, 291–297 (2000).
- 85. Novotny, W. F., Maffi, T., Mehta, R. L. & Milner, P. G. Identification of novel heparin-releasable proteins, as well as the cytokines midkine and pleiotrophin, in human postheparin plasma. *Arterioscler. Thromb. J. Vasc. Biol.* **13**, 1798–1805 (1993).
- 86. Tezuka, K. et al. Isolation of mouse and human cDNA clones encoding a protein expressed specifically in osteoblasts and brain tissues. Biochem. Biophys. Res. Commun. 173, 246–251 (1990).
- 87. Donato, R. Intracellular and extracellular roles of \$100 proteins. Microsc. Res. Tech. 60, 540-551 (2003).
- 88. Rudland, P. S. et al. Prognostic Significance of the Metastasis-inducing Protein S100A4 (p9Ka) in Human Breast Cancer. Cancer Res. 60, 1595–1603 (2000).
- 89. Mirotsou, M. et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl. Acad. Sci. 104, 1643–1648 (2007).
- 90. He, W. et al. Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc. Natl. Acad. Sci. 107, 21110–21115 (2010).
- 91. Acharya, A. et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139, 2139–2149 (2012)
- 92. True, L. D. et al. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc 23, 1346–1356 (2010).
- 93. Zhu, J., Thakolwiboon, S., Liu, X., Zhang, M. & Lubman, D. M. Overexpression of CD90 (Thy-1) in pancreatic adenocarcinoma present in the tumor microenvironment. *PloS One* **9**, e115507 (2014).
- 94. He, L., Yang, Z. & Li, Z. The clinical pathological significance of Thy1 and CD49f expression in chondrosarcomas. Pathol. Res. Pract. 212, 636–642 (2016).
- 95. Sukowati, C. H. C. et al. The expression of CD90/Thy-1 in hepatocellular carcinoma: an in vivo and in vitro study. PloS One 8, e76830 (2013).
- 96. Perreau, J., Lilienbaum, A., Vasseur, M. & Paulin, D. Nucleotide sequence of the human vimentin gene and regulation of its transcription in tissues and cultured cells. *Gene* 62, 7–16 (1988).
- 97. Sommers, C. L. *et al.* Vimentin rather than keratin expression in some hormone-independent breast cancer cell lines and in oncogene-transformed mammary epithelial cells. *Cancer Res.* **49**, 4258–4263 (1989).
- 98. Armstrong, J. F., Pritchard-Jones, K., Bickmore, W. A., Hastie, N. D. & Bard, J. B. L. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. *Mech. Dev.* **40**, 85–97 (1993).
- 99. Baird, P. N. & Simmons, P. J. Expression of the Wilms' tumor gene (WT1) in normal hemopoiesis. Exp. Hematol. 25, 312–320 (1997).